Observation of near surface ocean variability: data synthesis and analysis

F. Gaillard, K. Von Schuckmann Laboratoire de Physique des Océan UMR 6523: CNRS-IFREMER-IRD-UBO L. Petit de la Villéon, SISMER, IFREMER

Context and Objectives

- The ocean is part of the climate system, and for that reason T and S need to be monitored in order to detect, describe and quantify the variability.
- Global systems are already operating
 - For surface properties: SST and in a near future SSS (SMOS and Aquarius)
 - For in-situ: ARGO for 0-2000m, GOSUD for near surface
- ISAS (In Situ Analysis System) has been developped by the ARIVO project to produce a synthesis of the temperature and salinity data made available by Coriolis. The fields are used to analyze global variability from intraseasonal to interannual time scales.

We present here

- Results of an analysis based on ARGO (and more), focussing on near surface layers
- Preliminary results on the use of TSG data and our plan for their systematic use

Mesure de la salinité de surface depuis l'espace

Après la température et l'élévation de la surface, c'est à la salinité que vont s'attaquer les satellite. L'ESA annonce le lancement de son satellite SMOS début 2009. La NASA a un projet équivalent pour 2010-2011. Ces mesures devront être calibrées sur des mesures in situ de référence.

> QuickTime[™] and a decompressor are needed to see this picture.

Smos pixel location for julian day 19372 (ref 1/1/1950)

QuickTime[™] and a decompressor are needed to see this picture.

Analysis system: Method

Objective analysis (Optimal Interpolation)

- yo: data vector (observations)xa: state vector (T or S at grid points)
- •Pa: covariance matrix of analyzed field
- •R: data error covariance matrix
- •Co and Cao: covariance matrices of obs-obs and analyzed-obs
- •Xf: first guess for x at analyzed points
- •Yf: first guess at data point

Equivalent observation/mapping matrix:

 $x^{a} = x^{f} + C_{ao} (C_{o} + R)^{-1} d$ $P^{f} - C_{ao} \left(\overline{C_{o}} + R \right)^{-1} \overline{C_{ao}^{T}}$ $\mathcal{V}^{ao} = R(C_o + R)^{-1} d$

Analysis system: history

Year/Version Name	Domain/levels	Mode
V1: 1999-2001	POMME	Operational (LPO)
V2: 2002-2003	North Atlantic	Operational (Coriolis)
V3.1: 2003-2005	Atlantic	Operational (Coriolis),
V3.3 -3.6: 2005-2008	Global	
V4.1: 2008	Global	Research: data validation, Climatology, Interannual variability

ISAS-V4: organisation

STD	Climatology and spike check Interpolate on standard levels Super-obs (averaging high frequency data)	matlab
PreOA	Gather data for each area Prepare NetCDF files (data and field)	matlab
OA	Analyse anomaly relative to reference in each area Save residuals	F95 Caparmor
PostOA	Gather areas and compute total field (reference + anomaly) to produce final files	matlab

In Situ Analysis System : ISAS-V4

- 151 std-level: [[0 3] [5:5:100] [110:10:800] [820:20:2000]]
- 1/2° Mercator limits:

Covariances scales

$$C_o = C_o(dx_o, dy_o, dt_o) = \sum_i \sigma_i^2 e^{-\left[\frac{dx_o^2}{2L_x i^2} + \frac{dy_o^2}{2L_y i^2} + \frac{dt_o^2}{2L_t i^2}\right]},$$

i = 1; Lx=Ly=300km; Lt = 21 days i = 2; Lx=Ly=2*resol<4*Rossby radius)<300km; Lt = 21 days

A priori variance

Salinity,Deviation Standard, 20m

min = 0.00 max = 5.35 - 15/06/2007

160°E

80°W

120°E

40°E

Analysis of residuals:

- $y_o y_a = R (C_o + R)^{-1} d$
- Applied to ARGO floats:

Detecting Salinity drift

Meddy

6900399: T-S

Pressure sensor problem

ARRAGL04: Re-analysis 2002-2007

- Data count (no TSG) :
- Number of data in 5° squares by season over the period 2003-2007
 - Very few data at 3 m
 - Maximum at 10 m
 - Introducing TSG should improve significantly 3 and 5 m coverage

Error map at 10 m

Annual mean Salinity Error (2002) - Depth 10 m

Annual mean Salinity Error (2003) - Depth 10 m

Annual mean Salinity Error (2004) - Depth 10 m

RIVO

70⁰N

60⁰N

50⁰N

4001

10°S 20°S 30°S 40°S

50°S

60⁰S

7008

80°S

30

min = 25.00, max = 99.00 - pctvar max = 99.00 - 31/03/2008

Annual mean Salinity Error (2005) - Depth 10 m

RIVO min = 15.00, max = 99.00 - pctvar max = 99.00 -31/03/2008

70⁰N

60⁰

50°N

400

30

400

50°S

60⁰S

70⁰S

Annual mean Salinity Error (2006) - Depth 10 m

Annual mean Salinity Error (2007) - Depth 10 m

min = 18.00, max = 99.00 - pctvar max = 99.00 -31/03/2008

RIVO

RIVO

min = 9.00, max = 99.00 - pctvar max = 99.00 -31/03/2008

min = 7.00, max = 99.00 - pctvar max = 99.00 -31/03/2008

Mean 2002-2007/WOA05:

15

10

5

38

34

33

32

ARIVO-TEMP, 0010m 70⁰N 25 60⁰N 50⁰N 20 40⁰N 300 20⁰ 30⁰ 40°S 50⁰S 60⁰S 70⁰S 0 80⁰S [>]120°₽40°₽50°₽60°₩60°₩0°₩20°₩0°₩0°₩60°₩60°₩0°₩20°₩ 0° 20°₽40°₽50°₽50°₽20°₽ ARIVO-PSAL, 0010m 70⁰N 37 60⁰N 50⁰N 40°N 30°N 20°N 10°N 36 35 20 300 40°S 50⁰S

60**°**S

70⁰S

80⁰S

ARV08-WOA05, FD: TEMP, 0010m

ARV08-WOA05, FD: PSAL, 0010m

Amplitude of annual cycle \Box

WOE

WOE

0.6

60

0.8

120

1

6

60

120

The first annual harmonic, reprensenting the seasonal cycle has been extracted from the monthly series (left panel). The amplitude of the temperature annual cycle is stronger on the western side of the basins of the northern hemisphere. It is minimum along the equator. The salinity cycle is totally different. It is stronger in the tropical band and in the vicinity of large rivers outflows. It is also intensified in the areas influenced by ice formation. The imprints of the strong current system (mainly on the western boundaries) is also detected.

The zonal average of the seasonal cycle amplitude change, relative to the reference WOA-05 cycle is shown on the left panel for both parameters (blue curves). The change in cycle amplitude is compared to a similar quantity derived from satellite temperature data (red curve). The reference period for the satellite data being different, the curves cannot be compared exactly, but the agreement is convincing. The amplitude of the temperature seasonal cycle has increased by nearly 0.2°C in the north hemisphere. Changes in the salinity cycle are strongest in the tropical band.

⁽K. Von Schuckmann, LPO)

Interannual variability: Mixed layer depth in february

Mixed layer depth, 2005/02

Mixed layer depth, 2007/02

LIntroducing TSG data in ISAS-V3 (D. Mathias,

2006)

- Configuration: -version 3.02
 - L_T: 20 day
 - $W_{LS}=1$; $W_{MS}=2$; $W_{US}=3$
 - Analysis level: 5 m
 - Data averaged over 5 km square and 24 h

Modification introduced by the TSG data

Salinity map at 5 m using ARGO + TSG data

Using residuals to detect biases and errors:

Atalante cruise, december 2003

2 areas with explained high values (Senegal-Liberia and Gulf of Guinea)
Away from these areas the median residual is 0.05 PSS

Introducing TSG data in ISAS

Plans for V4 (oct. 2008-march 2009)

- Start on 2002-2005 'clean dataset', NetCDF format
- Modify STD to accept DM-Netcdf files
- Produce '0, 3, 5, 10 m' analysis of the North-Atlantic (2002-2005)
- Validate
- Extend to global ocean 2002-2007 with available datasets
- Perform residual analysis to detect biases and errors
- Produce analysis with validated data
- Compare to Reynolds and satellite products